Use of Bacterial Source Tracking for Characterization of Watersheds

Terry Gentry

Department of Soil and Crop Sciences Texas A&M University

April 1, 2022

What is Bacterial Source Tracking?

- Used to determine the sources of fecal contamination
- Based on uniqueness of bacteria from individual sources
- A variety of different methods are used
- Often works best as part of a "toolbox approach"

BST Target Organisms

- Bacterial v. Microbial Source Tracking
- Different targets:
 - E. coli
 - Bacteroidales
 - Bacteriophage
 - Human viruses
 - Animal cells
 - Chemicals

BST Approaches

- Culture-based (library-dependent)
 - Isolate bacteria
 - Phenotypic/genotypic characterization
 - Compare to isolates from known-source samples
- Marker-based (library-independent)
 - Extract DNA from samples
 - Use PCR-based methods to detect/quantify source-specific markers
- Sequencing-based
 - 16S rRNA gene, metagenomic

History of BST Use in Texas

- Lake Waco/Belton Project Findings
 - Initiated Sep. 2002 with funding from TSSWCB
 - 4-method composite performed better than individual methods
 - 2-method composites appeared promising
 - ERIC-ARA = lower cost but more sample & data processing
 - ERIC-RP = higher cost but automated
- TMDL Task Force Report 2007
 - Confirmed ERIC-RP as recommended method

Use of Texas *E. coli* BST Library for Identifying Water Isolates

Library-Dependent BST Methods

Methods:

- DNA fingerprinting
 - Enterobacterial repetitive intergenic consensus sequence-polymerase chain reaction (ERIC-PCR)
 - RiboPrinting® (RP)

Advantages/Disadvantages:

- More discriminating
- Allows ranking of sources
- Relatively expensive

Texas E. coli BST Library (v. 03-20)

- Contains 1,912 E. coli isolates from 1,653 different human and animal samples
- Developed by collecting over 4,000 domestic sewage, wildlife, livestock, and pet fecal samples and screening over 7,000 isolates for clones and host specificity
- Samples from >20 watersheds across Texas for BST including:
 - Plum Creek
 - San Antonio
 - Lake Granbury
 - Oyster Creek / Trinity River
 - Waco / Belton Lake
 - Little Brazos River Tributaries
 - Attoyac Bayou

 Additional isolates being added from ongoing and future BST projects in other areas of Texas

Three-way v. Seven-way Split of Results

- Using the results
 - Is it from human sources?
 - Is it from livestock?
 - Is it from wildlife?
- Biology
 - Large variety of wildlife
 - Geographical and temporal differences
 - Cosmopolitan strains
- Statistics
 - Number of isolates collected
 - May only use three-way split for limited studies

Plum Creek BST Results 5 Sampling Sites (3-Way Split)

Library Independent BST

- Most common approach targets Bacteroidales
- Bacteroidales human and animal fecal bacteria, more abundant than E. coli
- Markers available for
 - Ruminants (cattle, deer, elk, sheep, horses, llama)
 - Humans
 - Horses
 - Birds
 - Hogs
- Limited markers for wildlife
- Relationship to E. coli and pathogens uncertain
- Some highly specific, but tradeoff between specificity and sensitivity

Brevibacterium LA35 Poultry Marker

- Developed by Harwood lab at University of South Florida (Weidhaas et al., 2013)
- Tested samples from eastern, central, and southern Texas
 - 58 poultry fecal and litter samples
 - 119 livestock and wildlife fecal samples
- Results
 - Poultry litter (48/58 positive = 83% sensitivity)
 - Non-target (1/119 positive = >99% specificity)

Library Independent BST

Bacteroidales BST ResultsBase Flow Samples (n=225)

Hurricane Harvey Flooding

- Six locations in the southeastern Houston area around Clear Lake
- Surface water samples collected as soon as sites accessible following the hurricane and then every 1-2 weeks for ~2 months
- Measured E. coli and used qPCR for general and human markers

E. coli Levels

Total Bacteroides Levels (GenBac)

Human Bacteroides Levels (HumM2)

Sequencing-Based BST

- High-throughput DNA sequencing (HTS) to identify microbiome in water samples
- Compare to microbiomes in known-source samples using programs such as SourceTracker (Knights et al., 2011)

- Staley et al. (2018) spiked samples with various fecal mixtures
- HTS approach 91% accurate in identifying sources with no false negatives
- Overall, strong correlation between source contributions and volume spiked

Table 1. Proportions of Spiked Source Material (% vol/vol) in Blinded Sink Samples and SourceTracker Sink Predictions (% Mean ± Standard Deviation) Using the FL Blinded Source Samples Alone

sample ID	sample composition	cow	horse	cat	dog	WWTP
SW01	all sources expected SourceTracker	2.0 3.3 ± 0.2	2.0 27.4 ± 0.5	2.0 6.5 ± 0.8	2.0 44.3 ± 0.8	2.0 11.8 ± 0.8
SW25	dog expected SourceTracker	0.0 0.0 ± 0.0	0.0 0.2 ± 0.4	0.0 0.0 ± 0.0	10.0 93.7 ± 0.5	0.0 1.2 ± 0.3

Use of BST Results

- Reconcile with:
 - E. coli enumeration data
 - -Land use
 - Watershed source survey
 - Modeling
 - Stakeholder input
 - Common sense

How to Start a BST Project?

- Government and commercial BST labs
- What is the goal of BST?
 - Characterize watershed or monitor specific sources?
 - How many potential sources?
 - All, most numerous...
 - One or a few (e.g., human)
 - What level of resolution is needed?
 - Individual species
 - Groups (e.g., humans, domesticated animals, and wildlife)
 - Presence/absence, relative ranking, or absolute number for various sources

Costs of a BST Project?

Current BST costs:

- ERIC-RP = \$250/isolate
- Bacteroidales PCR
 - General + one specific marker = \$250/sample
 - General + four specific markers = \$325/sample
- Sequencing-based = ?

Example watershed:

- Three sites
- Samples collected monthly for one year
- ERIC-RP five isolates per sample
- 3 sites x 12 sampling events x 5 isolates/sample [180 total isolates] x \$250/isolate = \$45,000
- Does not include sample collection, initial sample processing, and transport to lab

Questions?

Terry Gentry
Texas A&M University
2474 TAMU

College Station, TX 77843

Phone: (979) 845-5323

Email: tjgentry@tamu.edu

